The National

Numeracy Strategy

Reasoning abous numbers, with challenges and simplificaftions

The activities in this booklet should help children to:

- solve mathematical problems or puzzles, recognise and explain patterns and relationships, generalise and predict;
- explain methods and reasoning orally and in writing;
- suggest extensions by asking 'What if ...?'

Many of the activities have supplementary objectives, such as:

- add several numbers;
- use known number facts and place value to add, subtract, multiply or divide mentally;
- recognise multiples.

The activities may be copied freely by schools in England taking part in the National Numeracy Strategy.

Handshakes

- Everyone in this room shakes hands with everyone else.

How many handshakes are there?

Simplifications

- How many handshakes would there be for 3 people? And 5 people?

Challenges

- How many handshakes would there be for 100 people?
- Generalise using words or symbols.

The answer is...

The answer is 24 .
What was the question?

- How many different questions can you write with an answer of 24 ?
- What is the hardest question that you can write with an answer of 24 ?

Simplifications

- How many different questions can you write with an answer of 10 ?
- How many different addition sums can you write with an answer of 24 ?

Challenges

- How many different questions can you write with an answer of 0.35 ?
- How many different questions can you write with an answer of 24 using all the operations,,$+- \times$ and \div at least once in each question?
- Randomly choose three 0-9 number cards. Try to write a question with an answer of 24 that uses the numbers on these three cards.

Decigame

A game for two players.
The winner is the first player to get three of their marks in a row without any of the other player's marks in-between.

Rules

- Take turns to choose two numbers from the table below:

1	2	3	4	5	8	10	20

- Divide one number by the other to make a number between 0 and 1 .
- Mark your answer on the number line below:

0

- Numbers can be used more than once.

Simplifications

- Use a number line which is divided into tenths:

- Use a 0-100 number line and the numbers 1 to 10 in the table. Players choose two numbers and multiply them together.

Challenges

- Use a 0-5 number line. Add the numbers $6,9,12,15,16$ and 18 to the table.
- Use a 0-10 number line and the table below:

1.5	0.8	2.4	0.6	4.8	0.3	6.0	3.6

Choose two numbers and multiply or divide them.

Snakes

- Choose a number less than 10.

9

- If the number is even, halve it and add 1. If the number is odd, double it.

$$
9 \rightarrow 18
$$

- Carry on in this way.

$$
9 \rightarrow 18 \rightarrow 10 \rightarrow 6 \rightarrow 4 \rightarrow \ldots
$$

- What happens?

Simplifications

- Give starting numbers which produce short snakes.

Challenges

- Start with a two-digit number.
- Investigate which numbers produce the longest snakes.
- Find snakes that contain all the numbers from 1 to 20.

Consecutive sums

$$
5=2+3
$$

$$
12=3+4+5
$$

- Which other numbers can you make by adding consecutive numbers?
- Which numbers can be made in more than one way?

Simplifications

- Try to find consecutive numbers that add together to make each of the numbers from 5 to 20.
- What totals can you make using two or more numbers from the set $1,2,3,4,5$?

Challenges

- Which numbers can be made by adding two consecutive numbers? Which numbers can be made by adding three consecutive numbers?
- Which numbers cannot be made by adding consecutive numbers? Why?

Magic squares

This square is magic.

4	3	8
9	5	1
2	7	6

The sum of every row, column and diagonal is the same, 15 .
15 is the magic total for this square.

- Complete these magic squares using the numbers 1-9:

	7	
1		
		4

	1	
		7
		2

- Can you make up two more magic squares using the numbers 1-9?
- Is a magic square still magic if you add 2 to each number?

Double each number? Why?

- What happens when you add or subtract two magic squares?

Simplifications

- Use 0-9 number cards. Use as many as you can to make trios of numbers that add up to 13. Make trios of numbers that add up to different totals.
- Use nine of the 0-9 number cards. Arrange the cards in a 3 by 3 grid so that each row adds up to 13 .
- Choose from the numbers 0-9. Arrange the numbers in a 3 by 3 grid so that each row and column adds up to 13 . You can use a number more than once.

Challenges

- Arrange
$2,4,5,7,8,10$ into this square to make it magic.

- Make a 3 by 3 magic square using the numbers 3-11.
- Make a 3 by 3 magic square using any nine consecutive numbers.
- Make different 3 by 3 magic squares which have a magic total of 27 .

Getting even

A game for two players.
The winner is the first player to score 10 points.

Rules

- The first player writes down any two-digit number without showing it to the other player.

$$
34
$$

- At the same time, the second player also writes down any two-digit number without showing it to the other player.

55

- Players show each other their numbers and together find the total.

$$
34+55=89
$$

- If the answer is even the first player scores 1 point. If the answer is odd the second player scores 1 point.

Simplifications

- Use single-digit numbers.

Challenges

- Is this a fair game?
- Play the game but multiply the two numbers together. Is this game fair?
- What happens when three or four numbers are added or multiplied?

Different products

1
 2

- Make up some multiplications that use the numbers above.

For example:

$$
\begin{gathered}
3 \times 4 \\
2 \times 3 \times 4 \\
3 \times 21
\end{gathered}
$$

How many different products can you make?

Simplifications

- How many different sums can you make by adding two or more of the numbers?
- How many different differences can you make by subtracting two of the numbers?
- Use only three of the numbers.

Challenges

- What is the biggest product you can make?
- Generalise for any four numbers.
- Investigate different products using five numbers.

Score board

You need 3 counters.

- Put the 3 counters on the board so that each one scores.

There can be more than one counter in each part of the board.

- Add up the numbers to get a score.
- What different scores can you make?

Simplifications

- Use smaller numbers on the board.
- Divide the board up into only three sections and use two counters.
- What is the biggest score you can make?

Challenges

- Use two-digit numbers or decimal fractions on the board.
- Use a board with more sections.
- Use a board with a 'doubles' ring around the outside.

- Multiply the numbers to get your score.

Sum to twelve

The sum of 5 and 7 is 12 .

$$
5+7=12
$$

The sum of 2,4 and 6 is also 12 .

$$
2+4+6=12
$$

- What other numbers sum to 12 ?

Simplifications

- Use a rod of 12 multilink cubes which can be partitioned in different ways.
- What numbers sum to 6 ?
- In how many different ways can you write 5 as the sum of 1 s and 2 s?

Challenges

- Investigate all the number sentences it is possible to make for other sums.
- $12=5+7$
and
$5 \times 7=35$.
$12=2+4+6$
and
$2 \times 4 \times 6=48$.
What is the largest product you can make from numbers that sum to 12 ?

Changing money

I have one 50 p, one 20 p, one 10 p, one 5 p, one $2 p$ and one 1 p in my pocket.

- How much money have I got altogether?
- If I pulled any two coins out of my pocket, how much might they be worth?
- What if I pulled three coins out of my pocket, or four coins out of my pocket, or...?

Simplifications

- Use only 4 coins.
- What different coins could add together to make 10p?
- I have 3 coins in my pocket. How much money could I have altogether?

Challenges

- You have a bag containing lots of $2 p$ coins and lots of 5 p coins. What amounts of money can't you make?
- I was asked to change a $£ 1$ coin. I had more than $£ 1$ in my pocket, but I could not make exactly $£ 1$. How much money could I have had in my pocket?

Ordering numbers

- Use a set of 0-9 number cards to make some two-digit numbers.

- Arrange these numbers in order.

Simplifications

- Time how long it takes to order a shuffled set of 0-20 cards.
- Use a number line to help with the ordering.

Challenges

- Order sets of three-digit numbers.
- Use each card only once. Make the five largest two-digit numbers possible.
- Make five even numbers.
- Make five multiples of 3 .

Bracelets

- Write some numbers in the circles on the bracelet below:

- Write in appropriate operations to complete the bracelet.

For example:

- Make up some different bracelets.

Simplifications

- Use single-digit addition and subtraction only.
- Give the children a starting number and all the functions.
- Make shorter bracelets.

Challenges

- Use multiplication and division only.
- Use two-digit numbers or decimal fractions in the circles.
- Make longer bracelets.

Arithmogons

Look at the diagram below:

The numbers in the squares are made by adding the numbers in the circles.

- Complete the diagrams below:

Simplifications

- Use single-digit numbers only.
- Only make the numbers in the squares given the numbers in all the circles.
- The numbers in the squares are made by finding the difference between the numbers in the circles.

Challenges

- Use two-digit numbers or decimal fractions.
- Give all three numbers in the squares and find the three numbers in the circles.
- The numbers in the squares are made by multiplying the numbers in the circles.

Swapping places

You need some counters.
Arrange some yellow and some blue counters alternately in a line.

Counters next to each other can swap places.

- How many swaps does it take to have all the yellow counters together and all the blue counters together?

Simplifications

- How many swaps would there be for 2 counters of each colour?
- How many swaps would there be for 3 counters of each colour?
- How many swaps would there be for 4 counters of each colour?

Challenges

- How many swaps would there be for 100 counters of each colour?
- Generalise, using words or symbols, when there is the same number of each coloured counter.
- Investigate different numbers of blue and yellow counters: for example, 2 blue and 3 yellow counters.
- Investigate swapping 3 different coloured counters.

