Year 6

Mastery Overview Spring

Year 6

SOL Overview

As well as providing term by term overviews for the new National Curriculum, as a Maths Hub we are aiming to support primary schools by providing more detailed Schemes of Learning, which help teachers plan lessons on a day to day basis.

The following schemes provide exemplification for each of the objectives in our new term by term overviews, which are linked to the new National Curriculum. The schemes are broken down into fluency, reasoning and problem solving, which are the key aims of the curriculum. Each objective has with it examples of key questions, activities and resources that you can use in your classroom. These can be used in tandem with the mastery assessment materials that the NCETM have recently produced.

In addition to this we have also creates our own network area where teachers form across the country can share their lesson plans and resources that are linked to our schemes.

We hope you find them useful. If you have any comments about this document or have any ideas please do get in touch.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide a free assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice
Part 2: Reasoning based questions
You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

The assessments have been designed with new KS2 SATS in mind. All of the assessments will be ready by 30 November 2015.

Year 6

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete - Pictorial - Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete - students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

> An example of a bar modelling diagram used to solve problems.

Abstract - with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 6

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues.

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they don't appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Year 6

NCETM Mastery Booklets

In addition to the schemes attached the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'. They have been written by experts in mathematics.

It will also give you a detailed idea of what it means to take a mastery approach across your school.

Information can be found on the link below.
https://www.ncetm.org.uk/resources/46689

WRMH Primary Network

over the past 12 months we have been working with a company MyFlo to develop a free online platform where teachers from across our region (and wider) can share their own resources and lesson plans based on this new curriculum. All our overviews, schemes and assessment materials will be made available on the MyFlo network.

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We don't believe that there are individuals who can do maths and those that can't. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar Modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a Maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with the other Maths Hubs across the country.

Term by Term Objectives

Year 6

Year 6 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
들	Number: Place Value		Number: Addition, Subtraction, Multiplication and Division				Fractions					
을	Number: Decimals			Measurement			Number: Algebra		Number: Ratio			
$\begin{aligned} & \text { \% } \\ & \text { E } \\ & \text { E } \\ & \text { on } \end{aligned}$	Geometry: Properties of Shapes			Post SATs Project Work								

Term by Term Objectives

Year 6

Year Group	Y6	Term				
Week 1 Week 2	Week 3	Week 4 Week 5 Week 6	Week 7 Week 8	Week 9Week 10	Week 11	Week 12
Number: Decimals Identify the value of each digit in numbers given to three decimal places and multiply numbers by 10,100 and 1000 giving answers up to 3 decimal places (dp). Multiply one digit numbers with up to 2dp by whole numbers. Use written division methods in cases where the answer has up to two decimal places. Solve problems which require answers to be rounded to specified degrees of accuracy.	Number: Percentages Solve problems involving the calculation of percentages [for example, of measures such as 15% of 360] and the use of percentages for comparison. Recall and use equivalences between simple FDP including in different contexts.	Measurement Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3dp. Convert between miles and kilometres. Recognise that shapes with the same areas can have different perimeters and vice versa. Recognise when it is possible to use formulae for area and volume of shapes. Calculate the area of parallelograms and triangles. Calculate, estimate and compare volume of cubes and cuboids using standard units, including $\mathrm{cm}^{3}, \mathrm{~m}^{3}$ and extending to other units $\left(\mathrm{mm}^{3}, \mathrm{~km}^{3}\right)$.	Number: Algebra Use simple formulae. Generate and describe linear number sequences. Express missing number problems algebraically. Find pairs of numbers that satisfy an equation with two unknowns. Enumerate possibilities of combinations of two variables.	Number: Ratio Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. Solve problems involving similar shapes where the scale factor is known or can be found. Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	Geometry and Statistics Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius. Interpret and construct pie charts and line graphs and use these to solve problems. Calculate the mean as an average.	Time at the beginning or end of the term for consolidation gap filling, seasonal activities, assessments etc.

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Use written division methods in cases where the answer has up to two decimal places.	- Solve: $\begin{array}{r} 25 \div 4= \\ 237 \div 4= \\ 9462 \div 8= \end{array}$ - Jasper has $£ 453$ pounds. He splits his money between four different bank accounts. How much does he put in each bank account? - Sort the divisions below into the table. Can you add one more division sentence to each box?	- Stefan and Tilly are both calculating the answer to $147 \div 4$ Stefan says, "The answer is 36 remainder 3" Tilly says, "The answer is 36.75" Who do you agree with? Explain your answer. - True or False The only number that divides to give an answer with 1 decimal place is 2 . Prove it. - True or False The only numbers that divide to give an answer with 2 decimal places are 4 and 8. Justify your answer.	- Find the smallest number that can be added to 92.7 to make it exactly divisible by 7 . How about 8 ? - Each division sentence can be completed using the digits below. If there is more than one digit missing from the division it must be filled with the same digit. e.g. $44 \div 5=8.8$

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison.	- Calculate: 10% of 60 25% of 300 45% of 460 - Find: 20% of $£ 340$ 35% of 6 m 75% of $£ 1340$ 20% of 2 hours - Daniel has spent 30 minutes doing his homework so far this week. This is 25% of the time he has to spend on his homework. How much longer must he spend on his homework this week?	- Isla says, "To find 10\% you divide by 10 , to find 20% you divide by $20^{\prime \prime}$ Do you agree? Explain your reasoning. - Danyaal is saving money. His dad offers him two lots of money. 60% of $£ 35$ 45% of $£ 48$ Which should he take? Show your reasoning. - Would you rather: Be given 60% of two cakes or 26% of 5 cakes. Be surrounded by 25% of 40 snakes or 40% of 25 snakes? Explain your reasons clearly for each choice. Can you make up some of your own 'Would you rather?' questions?	- A golf club has 200 members. 58% of the members are male. 50% of the female members are children. a) How many male members are in the golf club? b) How many female children are in the golf club? - Jack and Tara both have a string of beads. They have red beads, blue beads, white beads and purple beads. They both count how many of each colour they have. Jack's beads are 50% blue, 35% red, 10% white and 5% purple. Tara's beads are 40% blue, 32% red, 20% white and 8% purple beads. They have the smallest amount of beads possible with those percentages. How many beads did Jack have? How many beads did Tara have? If we know that Jack and Tara have 10 purple beads between them, how many beads do they have altogether?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recall and use equivalences between simple FDP including in different contexts.	- Fill in the table. - Order from smallest to largest: $40 \%, \frac{3}{5}, 0.45,54 \%, \frac{5}{10}, 0.05$ - Four friends share a pizza. Tyrone eats 35% of the pizza, Jasmine eats 0.4 of the pizza, Imran eats 12.5% of the pizza and Oliver eats 0.125 of the pizza. Can you write the amount each child ate as a fraction? Who ate the most? Who ate the least? Is there any of the pizza left?	- In a Geography test, Sam scored 62% and Hamza scored $\frac{3}{5}$ Who got the highest score? Explain your answer. - Jack says: "To change a decimal to a percentage, multiply the decimal by $100 . "$ Do you agree? Explain your reasoning. - Dan wants to solve a problem using $\frac{1}{4}$ on his calculator. How could he type this into his calculator? Explain your thinking.	- Use the digits 1, 2 and 3 to fill in the missing digits below. $\begin{aligned} & \frac{\square}{8}=0 . \square 25=\square 2.5 \% \\ & \frac{\square}{5}=0 . \square=20 \% \\ & \frac{\square}{8}=0 . \square 75=\square 7.5 \% \end{aligned}$ - In January, Rahima saves $\frac{3}{5}$ of her $£ 20$ pocket money. In February, she saves 0.4 of $£ 10$ pocket money. In March, she saves 45% of her $£ 40$ pocket money. How much does she save altogether? How much more does she need to save $£ 100$? What fraction/percentage/decimal of $£ 100$ does she have already?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.	- Josh is trying to run 10 kilometres in one week. Here are the distances he runs on the first three days: Day 1: 1.6 kilometres Day 2: 850 metres Day 3: 2.12 kilometres How much further does he have to run? - Work out how many kilometres are in: 2568 metres +2 miles +1.8 kilometres - Miss Brown is making a packed lunch for each child in her class. They each receive: A 200g sandwich A 35g packet of crisps A 72g cookie A 43g apple She has 32 children in her class. What is the total weight of the classes packed lunches?	- True or false? If you convert any amount of grams into kilograms then it will never have an amount in the units e.g. $76 \mathrm{~g}=0.076 \mathrm{~kg}$ - Jenny travels 652 miles to go on holiday. Abbie thinks she travels further because she travels 1412 kilometres. Is Abbie right? Explain why. - A shop sells litre bottles of water for $99 p$ each but has an offer for $8 \times 300 \mathrm{ml}$ bottles for $£ 2$ If he wants to buy 12 L of water, which should he buy and why?	- Three athletes (Ben, Greg and Sam) jumped a total of 34.77 m in a long jump competition. Greg jumped exactly 2 metres further than Ben. Sam jumped exactly 2 metres further than Greg. What distance did they all jump? - Part of a ruler and a toy bus are shown below. The whole bus is 4 times the length that is shown. How long would 8 buses be in cm ? - Conversion bingo! Choose units to convert between [e.g. grams and kilograms] and ask children to write down 6 amounts. The first to mark all 6 is the winner!

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3dp.	- Fill in the blanks 149 hours = \qquad days \qquad hours 784 minutes $=$ \qquad hours \qquad minutes - Louisa drinks a pint of milk with her breakfast, 1.3 litres of water throughout the day and 450 ml of juice before bed. How much liquid does she drink altogether in the day? Give your answer in litres. - Use <, > or = to make the statements correct. 19 feet 7 yards 3 gallons 23 pints 42 ounces 2 pounds	- Caitlyn thinks 11.38 litres is the same as 20 pints. Do you agree? Prove it. - Here are three amounts: 4.5 pints 3.65 litres 1875 millilitres If you wanted to work out the total amount, what unit of measurement would you convert them all to? Explain why. - Alyson says, "To work out how many seconds are in one hour you do 60 cubed $\left(60^{3}\right)$." Do you agree? Prove it.	- Here is a train time table showing the arrival times of the same trains to Halifax and Leeds An announcement states all trains will arrive $\frac{3}{4}$ of an hour late. Which train will get into Leeds the closest to 09:07? - To bake buns for a party, Keeley used these ingredients: 600 g caster sugar 0.6 kg butter 18 eggs $=792 g$ $\frac{3}{4} \mathrm{~kg}$ self-raising flour 10 g baking powder What weight, in kilograms, did the unbaked products come to?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Convert between miles and kilometres.	- Complete the statements: a) 5 miles is approximately \qquad km. b) 40 kilometres is approximately \qquad miles. - Convert between miles and kilometres rounding to the nearest whole number: - The distance from Edinburgh to Glasgow is approximately 80 km . What is this in miles to the nearest whole number?	- Agree or disagree? It is easier to convert from miles to kilometres rather than kilometres to miles. Explain your answer. - Always, sometimes, never When converting from miles to kilometres, it is easier to multiply by 1.5 then add the extra tenths on at the end. - Michael ran the London Marathon which was 26.2 miles. Shafi ran 42 kilometres in a charity race over 3 days. Who ran the furthest?	- The tally chart below shows the number of miles different drivers did in a day. When Stefan's miles are added to it the whole amount of kilometres driven can be rounded to 50 when rounded to the nearest 10. How many miles did Stefan drive? Have you found all the possibilities? - Miles and his 6 friends take part in a 5 km charity race. Between them, how many miles do they run altogether?

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise that shapes with the same areas can have different perimeters and vice versa.	- Look at the shapes below. - Which two shapes have the same area? - Which two shapes have the same perimeter? - Draw two different rectangles that have an area of $12 \mathrm{~cm}^{2}$. - Draw two different rectangles that have a perimeter of 20 cm .	- True or false? Two rectangles with the same area can have different perimeters. Explain your answer. - A quadrilateral has an area of $24 \mathrm{~cm}^{2}$ Sophie says, "The perimeter is $6,6,6,6$ " Ben says, "That's not true. It's $8,8,3,3$ " Who is correct? Explain why.	- The shape below has an area of $\frac{1}{24}$ \square $\frac{1}{4}$ How many shapes can you draw with the area $\frac{1}{24}$? What are the perimeters of these shapes? Is there a pattern/do you notice anything? - Three children are given the same shape to draw. They each give a clue. Kate says, "The smallest length is 4 cm ." Lucy says, "The area is less than $30 \mathrm{~cm}^{2}$." Ash says, "The perimeter is 22cm." What are the lengths of the quadrilateral?

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise when it is possible to use formulae for area and volume of shapes.	- Which formula below would calculate the area of the right angled triangle? a) $a+b \times 2$ b) $a b \times 0.5$ c) $a+b+c$ d) $a b \times 2$ - Look at the cube below. a) Write the formula for the surface area of the cube. b) Write the formula that could be used to calculate the volume of this cube.	- Sidra writes the formula for the surface area of the cuboid. $a b+a c+b c$ Do you agree with Sidra? Explain your reasoning. - Anna is calculating the area of a triangle. She says, "I only need two of the side lengths to work out the area." Do you agree with Anna? Explain why.	- This is a drawing of David's garden. 10m 7 m He is planting seeds in it. It costs £2 per $5 \mathrm{~m}^{2}$ of the garden. How much does he spend to plant seeds in half of his garden? - Bob is tiling his bathroom wall. It costs $£ 1.50$ per $4 \mathrm{~cm}^{2}$. How much will it cost to tile the whole wall? - Calculate the missing length:

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Calculate the area of parallelograms and triangles.	- Calculate the area of the parallelograms: - Calculate the area of the triangles:	- An isosceles triangle has a perimeter of 20 cm . One of its sides is 6 cm long. What could the other two lengths be? Explain your answer. - The area of a rectangle is given by $A=b \times h$. Use the diagrams below to show two different ways in which it can be demonstrated that the area of a triangle is given by $A=\frac{1}{2} \times b \times h$. h \square h \square b - Knowing the formula of a rectangle, show why the formula of a parallelogram is also $a=b \times h$.	- Kara has a piece of fabric in the shape of a parallelogram. Its height is 12 m and its base is 18m. She cuts the fabric into four equal parallelograms by cutting the base and the height in half. What is the area of each new parallelogram? - Maria's classroom is shaped like a parallelogram. The height of the parallelogram is X metres and the corresponding base is 7 metres longer than the parallelogram's height. How can Maria write an expression that shows her classroom's area in terms of X ?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Calculate, estimate and compare volume of cubes and cuboids using standard units, including $\mathrm{cm}^{3}, \mathrm{~m}^{3}$ and extending to other units $\left(\mathrm{mm}^{3}, \mathrm{~km}^{3}\right)$.	- Find the volume of the cuboid. - This cuboid has a volume of $70 \mathrm{~cm}^{3}$. Calculate the height of the cuboid. - A cube has a volume of $125 \mathrm{~cm}^{3}$. Calculate the length, height and width of the cube.	- Clare is calculating the volume of this cuboid. She has written the answer: $960 \mathrm{~cm}^{3}$. Do you agree with Clare? Can you work out what she has done and help her solve the problem? - The volume of a cube is $64 \mathrm{~cm}^{3}$. The volume of a cuboid is also $64 \mathrm{~cm}^{3}$. Harry says, "I can definitely tell you the height, width and length of the cube but I can't definitely tell you the height, width and length of the cuboid." Explain Harry's answer.	- A box of matches measures 1 cm by 4 cm by 5 cm . Boxes of matches are placed in a cardboard box measuring 15 cm by 32 cm by 40 cm . How many boxes of matches fit into cardboard box? - Georgia is making cuboids using 24 cubes. How many different cuboids can she make? Show your different cuboids using volume $=$ length X width X height - A book is 19 cm wide, 26 cm long and 2.5 cm thick. There are 8 similar books placed on the top of each other. What is the volume taken up by them?

Year 6

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Generate and describe linear number sequences.	- Fill in the first two terms in this sequence. \qquad , 55, 63, 71 Can you write a formula to describe the sequence? - 7 is the first term in this sequence. What is the $7^{\text {th }}$ term? 7, 12, 17, - The formula $4 n+1$ can be used to generate the numbers in this sequence. Fill in the table below:	- Write a formula for the 10th, 100th and nth terms of the sequences below. $4,8,12,16$ \qquad $0.4,0.8,1.2,1.6$, \qquad - Here is a sequence: $3,8,13,18,23$ Circle the formula that describes the sequence. 4n-1 5n-2 $3 n+5$ Explain your reasoning.	- Write three sequences where the rule to find the next term is 'add 3 ' 1) 2) 3) Write two different linear sequences where the second number is 5 1) 2) - Ramesh is exploring three sequence-generating rules. Rule A is: 'Start at 30, and then add on 7, and another 7, and another 7, and so on.' Rule B is: 'Write out the numbers that are in the seven times table, and then add 2 to each number.' Rule C is: 'Start at 51, and then add on 4, and another 4, and another 4, and so on.' What's the same and what's different about the sequences generated by these three rules? Explain why any common patterns occur.

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Express missing number problems algebraically.	- Which of the following algebraic statements correctly describes the following problem? "Four times a number and add 5 to get the answer 17" $4 n+5=17$ $5 n+4=17$ $n^{4}+5=17$ $4(n+5)=17$ - An electrician charges $£ 15$ for every job that he attends and then $£ 8$ an hour for every hour he works. Tick the formula that could be used to calculate how much the electrician would charge for a job. h stands for hours: $\begin{gathered} 9 h-16 \begin{array}{c} 16 h \end{array}+9 \\ 9 h+16 \end{gathered}$ - A plumber charges $£ 9$ an hour. She is currently offering a $£ 5$ discount for all jobs. Write a formula to calculate how much money she should charge her customers.	- A taxi driver charges $£ 3$ at the start of each journey. For every mile covered another 25 p is added to the fare. The driver writes the following formula. Cost of journey $=3+$ number of miles x 25 Is the formula correct? Prove it. - James and Kelsey are using the following formula to work out what they should charge for three hours work. Cost in pounds $=40+20 \times$ number of hours: James writes down £180 Kelsey writes down £100 Who do you agree with? Why?	- Find the value of the circle in each of the following problems. It is worth a different value in each question. Can you write each of the number sentences above algebraically? - Kyra has 92p. She buys yoyos (y) costing 11 p and lollies (I) cost 4p. Can you write a formula to solve her problem? Can you find more than one set of numbers to solve her problem?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Find pairs of numbers that satisfy an equation with two unknowns.	- X and Y are whole numbers. X is a one digit number. Y is a two digit number. $X+Y=25$ Find all the possible pairs of numbers that satisfy the equation. - $\quad a$ and b are variables: $a+b=6$ Find 5 different possibilities for a and b . - Find 3 different possible pairs of values for a and b : $a b=18$ 1) $a=b=$ 2) $a=b=$ 3) $a=b=$	- Rhian is solving the equation $a+b=18$ a and b are both positive whole numbers. Rhian says, "a and b must both always be less than $18 . "$ Do you agree? Explain your reasoning. - Toby is finding a pair of numbers to fit the equation: $2 a+b=15$ Both letters represent whole numbers. Toby says, "One of the numbers must be odd and one must be even," Do you agree with Toby? Show your reasoning.	- $\quad a$ and b stand for whole numbers. $a+b=1000$ and a is 150 greater than b. Work out the values of a and b. - A rectangle has the area $24 \mathrm{~cm}^{2}$. This is expressed through the equation I $\times \mathrm{w}$ $=24 \mathrm{~cm}^{2}$. What could I and w stand for? Draw the rectangles to prove that the area is $24 \mathrm{~cm}^{2}$. - $\quad x$ and y are both whole positive numbers. When multiplied together they make an odd number under 20 What could x and y be?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
\bigcirc		- In this equation, a and b are both whole numbers which are less than 12 . $2 a=b$ Write the calculations that would show all the possible values for a and b . - Use the equation to fill in the missing values in the table below. $7 x+4=y$	- $\mathrm{ab}=9$ Deanna says, "a and b must both be odd numbers" Do you agree? Prove it. - The bar model below shows the equation $2 g+w=10$	- Lollipops come in bags of 5 and chocolate bars come in packs of 4. Mr Smith needs to buy 79 individual sweets in total. How many different combinations of lollipops and chocolate bars could he buy? Can you write the equation that shows this problem? - The volume of a cuboid is $152 \mathrm{~cm}^{3}$. The length of the cuboid is 8 cm . What could the width and depth of the cuboid be?
$\frac{0}{\frac{0}{4}}$	Enumerate possibilities of combinations of two variables.	Value of \mathbf{x} Value of \mathbf{y} 	10 g g w Can you draw a bar model to represent the following equations: $\begin{aligned} & 3 f+g=20 \\ & 7 a+3 b=40 \end{aligned}$ What could the letters represent?	

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve problems involving similar shapes where the scale factor is known or can be found.	- These 2 rectangles are similar. Can you find the missing lengths? 6 cm - The rectangles in the table below are similar. Fill in the missing lengths and widths. - Here are two equilateral triangles. The blue triangle is three times larger than the green triangle. Find the perimeter of both triangles.	- Find the missing lengths. Can you explain how you found each of the missing lengths? - Tom says these three rectangles are similar. Do you agree? Explain your reasoning.	- One rectangle has a perimeter of 16 cm . Another similar rectangle has a perimeter of 24 cm . The length of the smaller rectangle is 6 cm . Draw both rectangles. - Draw 3 rectangles with the same area where the length increases by the scale factor 2. Can you find more than one way of doing this?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	- Look at the set of shapes. Circle the statements that are true. 1. There are two orange squares for every six purple squares. 2. There are three purple squares for every orange square. 3. The ratio of orange to purple is $1: 3$ 4. The ratio of purple to orange is two to six. - Complete the sentences to describe the set of objects. There are 3 \qquad for every 5 \qquad . There are \qquad for every \qquad	- Danyal makes a necklace using green and orange beads. He makes a repeating pattern of 2 green beads and 3 orange beads. 0000000000 If he has 14 green beads and 25 orange beads, can he make a necklace without any beads being left over? Explain your answer. - Sarah makes a necklace using the repeating pattern shown below: 00000000000000 Which of the following statements is true? 1. If Sarah uses 12 green beads, she will use more than 30 orange beads. 2. If Sarah uses 12 green beads, she will use exactly 30 orange beads. 3. If Sarah uses 12 green beads, she will use less than 30 orange beads. Explain your reasoning.	- A coach holds 50 people. Most of the seats are taken. Junior tickets cost £13 and Adult tickets cost £23 The total amount paid for tickets is approximately £900 How many people on the coach were adults and how many were juniors? Can you find more than one option? - A shopkeeper spent exactly $£ 10$ on 100 eggs for her shop. Large eggs cost 50p each. Medium eggs cost 10p each. Small eggs cost 5p each. For two of the sizes, the shopkeeper bought the same number of eggs. How many of each size did the shopkeeper buy?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & \mathscr{O} \\ & \frac{\ddots}{0} \\ & \hdashline- \end{aligned}$	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.	- Label the diagram below using the labels provided. centre diameter radius circumference - Use the radius of the circles to find the diameter: a) 5 cm b) 3 cm c) 9 cm - Use the diameter of the circles to find the radius: a) 10 cm b) 12 cm c) 20 cm	- Complete the statement: The of a circle $=2 \times$ the of a circle. Draw a circle to prove the statement you have written. - Kainat says, "The bigger the radius of a circle, the bigger the diameter." Do you agree? Explain your reasoning.	- Here are 2 circles. Circle A is orange, Circle B is blue. The diameter of Circle A is $\frac{3}{4}$ the diameter of Circle B. 1) If the diameter of Circle A is 6 cm , what is the diameter of Circle B? 2) If the diameter of Circle A is 6 cm , what is the radius of Circle B? 3) If the diameter of Circle B is 16 cm , what is the diameter of Circle A? 4) If the diameter of Circle B is 16 cm , what is the radius of Circle A?

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Interpret and construct pie charts and line graphs and use these to solve problems.	- Construct a line graph to show the average rainfall over the year. - The pie chart shows how different people got to school. What percentage travelled by car? - If 23 people are vegetarian, how many people took part in the survey?	- Susie wants to show the difference in temperatures inside and outside at the same times during the day. Is this possible to do on one graph? Prove it. - Look at the following line graph. The data did not change from 2-3 hours. Why could this be?	- 96 people took part in this survey. How many people voted for cats? $\frac{3}{8}$ of the people who voted for dogs were male. How many females voted for dogs?

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Year 6

	National Curriculum Statement	All students				
		Fluency			Reasoning	Problem Solving
	Calculate the mean as an average.	- Calculate the mean of these sets of numbers: a) $3,6,8,2,4,12$ b) $7,13,16,9,8$ - Hassan is his school's cricket team's top batsman. His scores over the year are: $134,60,17,63,38,84,11$ Calculate the mean number of runs Hassan scored. - Four children have taken two tests, one English and one Maths.			- Six children have taken a mental maths test. The mean score was 15 out of 20 Can you find the missing score in the list of scores below? 1816171312 ??	- Can you make up a set of five numbers which have a mean of 3.6 ? Can you find more than one combination of five numbers? - Here is a line graph. Can you write three different ways someone could find the mean from the graph?
					- Sam uses a calculator to find the mean of $9,7,5,9$ and 13 He writes the answer 43	Growh of Lisa's Collection
		NAME Ali	MATHS 67	ENGLISH	If not, can you work out where he has gone wrong?	
		Sid	53	61	- Jasmine says,	
		Pam	66	57	"The mean average is	you write a mark scheme for teachers marking the questions giving them all the correct answers?
		John	72	75	always a whole number."	- A gym has two sets of weights; 3 kg and 8 kg . Two 3 kg weights and three 8 kg weights have a mean weight of 6 kg .
		Calculate a) b) c) d)	he mean: ths score glish score re overall re for each ts	child over both	Do you agree? Prove it.	Can you find any other combinations of 3 kg and 8 kg weights that have a mean weight of 6 kg ?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6

